
Webology (ISSN: 1735-188X)

Volume 18, Number 5, 2021

1 http://www.webology.org

Fast Syndrome-Cryptographic Hash Storage Based Tanimoto

Index Margin Relaxing Support Vector Regressive Data Auditing

With Iot

1S.Sivakamasundari , 2Dr.K.Dharmarajan

1Research Scholar, School of Computing Sciences, VISTAS, Chennai, India

1Assistant Professor New Prince Shri Bhavani Arts and Science College

2Associate Professor, Dept. of Information Technology, VISTAS

Abstract

Data auditing in the cloud server has more significance than any other data protection mechanism to

ensure the integrity of the user data. When users store their data, integrity is a major concern for data

owners due to the lack of direct control. However, the existing remote data auditing schemes for big data

platforms are difficult to provide a higher integrity rate. In order to improve the integrity verification of

data on cloud storage, A Fast Syndrome-Cryptographic Hash Storage based Tanimoto index Margin

Relaxing Support Vector Regressive Data Auditing (FSCHS-TIMRSVRDA) technique is introduced.

The FSCHS-TIMRSVRDA technique has three steps, namely the registration phase, generation phase,

and verification phase. In the registration phase, the user registers his detail to a cloud server for storing

their data collected from IoT. IoT collects the information from an entity and sends the information to

the cloud server. In the generation phase, the FSCHS-TIMRSVRDA technique uses the Fast Syndrome-

Cryptographic Hash function to generate the hash value for the cloud user data and send it to the cloud

server for dynamic storage. Whenever the cloud user needs to audit the data, the audit request is sent to

the third-party auditor (TPA). The TPA receives the audit request and the data from the cloud server for

data auditing. TPA generates the hash value for user data. Finally, TPA verifies the generated hash value

of data from CS with the hash value of data stored in TPA by using Tanimoto index Margin Infused

Relaxing Support Vector Regression. In this way, data auditing is performed in a cloud environment.

Experimental evaluation is carried out on factors such as space complexity, data integrity, and data

auditing time with respect to a number of cloud user data. Results show that the proposed FSCHS-

TIMRSVRDA technique can efficiently enhance the data integrity rate and reduce the space complexity

as well as data auditing time.

Keywords—component, formatting, style, styling, insert (key words)

Webology (ISSN: 1735-188X)

Volume 18, Number 5, 2021

2 http://www.webology.org

1. Introduction

Due to the rapid development of communications and networks, cloud storage is a method to store the

data online, which permits the data owner (DO) to efficiently access data at any time and any place.

With the extensive application of cloud storage, ensuring the integrity of user outsourced data receives

more and more consideration. Currently, data auditing is an important method to verify the integrity of

the data stored on the cloud server. Existing data auditing schemes have done many techniques in terms

of functionality, implementation, and security.

 The privacy-preserving cloud storage auditing (PP-CSA) method was introduced in [1] for

data sharing, where only legal users access the data using Diffie–Hellman protocol. However, a higher

integrity rate was not achieved with minimum time. In order to verify the integrity of data, a dynamic

auditing scheme was developed in [2] for big data storage. But it failed to use more effective data

auditing schemes for multiple users.

 Identity-based remote data integrity checking scheme was introduced in [3] to decrease the

system complexity. However, the performance of time consumption for integrity verification was not

focused on. An effective sampling verification algorithm was developed in [4] for dynamic auditing the

data and helping the users to update data efficiently. But the complexity analysis was not focused on the

verification process.

 A Secure Auditable Cloud Storage (SecACS) system was introduced in [5] for considering

the data dynamics with minimum computation time using a lightweight cryptographic process. But the

higher integrity rate was not achieved when considering more cloud user data. An efficient public

auditing scheme was introduced in [6] for cloud data to guarantee public auditing and preserve data

privacy. However, the designed scheme failed to support the auditing for a multi-cloud environment.

 An efficient approach was designed in [7] for data integrity auditing to decrease the

complexity of the auditing protocol. But the approach reduces the storage cost but the higher integrity

rate was not achieved. An online/offline remote data auditing (OORDA) framework was introduced in

[8] for the auditing process to guarantee the integrity verification of cloud data. But the framework was

not efficient to allow dynamic data auditing for cloud storage.

 A user behavior prediction-based data integrity auditing system was designed in [9] for

secure cloud storage and minimizing the auditing overhead. Data Integrity Auditing based on

minimizing any Trust on Third Parties (DIA-MTTP) was developed in [10] to minimize the storage

overhead. But it failed to consider the multiple users for accessing and updating the data on the cloud.

1.1 Main contribution

In order to address the above issues, an efficient technique called FSCHS-TIMRSVRDA is introduced.

Our main contributions are as follows:

(1) An efficient data auditing technique called FSCHS-TIMRSVRDA is introduced based on three

different processes namely registration phase, generation phase, and verification phase.

(2) To improve the dynamic data storage and minimize the space complexity, the Fast Syndrome-

Cryptographic Hash function is introduced in the FSCHS-TIMRSVRDA technique to generate

the hash value of user data. Then the data is stored in the cloud server with minimum storage

space.

Webology (ISSN: 1735-188X)

Volume 18, Number 5, 2021

3 http://www.webology.org

(3) To increase data integrity on cloud storage, FSCHS-TIMRSVRDA uses the Tanimoto index

Margin Infused Relaxing Support Vector Regression. Whenever the user wants to audit the data,

the audit request is sent to the third-party auditor (TPA). The TPA performs hash verification to

validate the integrity based on the Tanimoto index. The Margin Infused Relaxing Support Vector

Regression uses the hyperplane and marginal hyperplanes for verifying the hash value based on

the Tanimoto index similarity measure. If the two hash value gets matched, achieves higher data

integrity.

(4) To minimize the data auditing time, the TPA performs the auditing for only the registered cloud

user. Then it uses the Tanimoto index similarity for hash verification. This helps to minimize

time consumption.

(5) Finally, extensive experiments are conducted to evaluate the performance of our FSCHS-

TIMRSVRDA technique along with the conventional auditing scheme based on various

performance metrics.

1.2 Organization of paper

 The remainder of this research is organized as follows. A brief review of related works

concerning secure data auditing is presented in Section 2. Our network system model and the proposed

novel FSCHS-TIMRSVRDA are described in Section 3. In Section 4, the experimental setting is

provided, and in Section 5, the discussion of different parameters is described in detail. Finally, the

paper is concluded in Section 6.

2. Related works

 A public auditing-based framework was developed in [11] for secure data auditing on cloud

storage. However, the designed framework failed to improve the security and efficiency of the integrity

verification system. An integrity verification approach was introduced in [12] for securing cloud storage

based on Ternary Hash Tree (THT) and Replica-based Ternary Hash Tree (R-THT) to perform data

auditing. But the approach failed to verify the data integrity over the shared data across the user group.

 A certificate less multi-replica and multi-cloud data public audit system were developed in

[13] based on blockchain technology. But the designed system failed to achieve higher efficiency of

computation cost but the complexity was not minimized. A novel identity-based data auditing (IBDA)

system was developed in [14] for cloud storage. However, the designed system failed to improve the

data integrity.

 A decentralized arbitrable remote data auditing method was introduced in [15] for network

storage service based on blockchain techniques. A compressive secure cloud storage protocol was

designed in [16] for verifying the integrity and minimizing the storage costs. However, it failed to

improve the effectiveness of the proposed protocol. A cloud audit method was introduced in [17] for

multi-copy dynamic data integrity based on a red-black tree. But the performance of complexity was not

minimized.

 A stable and efficient audit method was designed in [18] based on the trust architecture that

guarantees the safety and confidentiality of records. A data integrity auditing without private key

storage method was introduced in [19] for secure cloud storage. But the performance of auditing time

Webology (ISSN: 1735-188X)

Volume 18, Number 5, 2021

4 http://www.webology.org

was not minimized. A dynamic outsourced auditing system was developed in [20] for dynamic updates

of outsourced data.

3. Methodology

With the extensive application of cloud storage, guarantying the integrity of user data reached

more and more attention. As the user data has been frequently updated by the owners. So the audit

schemes have the ability to maintain the static collection of data and to validate the integrity of the cloud

with the help of third-party auditors (TPA). But there are still a series of problems in the existing audit

schemes for dynamic data storage. Therefore, a novel technique FSCHS-TIMRSVRDA is introduced in

this paper for dynamic data storage and integrity verification.

 Figure 1 architecture diagram of the

FSCHS-TIMRSVRDA technique

Figure 1 demonstrates the architecture diagram of the proposed FSCHS-TIMRSVRDA technique

for cloud data storage. The system model of the proposed FSCHS-TIMRSVRDA technique comprises

the three types of entities such as cloud users who comprises the data

to be stored in the cloud server () in the form of a hash function using Fast syndrome-based

cryptographic hash to offer a data storage services, Third-party auditor (TPA) who has knowledge and

abilities that the trusted users to access the cloud data. Based on the above-said system model, the

proposed FSCHS-TIMRSVRDA technique is designed to provide higher integrity on cloud data storage.

3.1 Registration phase

In the FSCHS-TIMRSVRDA technique, initially, the cloud user enters and submits their details

to the cloud server (CS) for data storage. The cloud server provides the storage services only to the

registered users. Therefore, the cloud user needs to submit their details to the cloud server before

accessing the services. The users enter their details like name, date of birth, mail ID, and so on and it is

stored on the cloud server.

Figure 2 registration phase

Webology (ISSN: 1735-188X)

Volume 18, Number 5, 2021

5 http://www.webology.org

 Figure 2 illustrates the registration phase to store the user details into the cloud user for accessing

the different services.

3.2 Fast syndrome-cryptographic hash-based data storage

The second process of the FSCHS-TIMRSVRDA technique is to perform the data storage on a

cloud server. The server provides the storage services to the registered cloud users. IoT collects the

information i.e. data from an entity and sends the information to the cloud server. Let us consider the

number of data are generated from the IoT. Then the input data are converted into a

sequence of bits [0,1]

 (1)

From (1), denotes a sequence of bits. Followed by, convert the sequence of bits into

an integer. Then construct the matrix based on the integer value. For example, if the integer value is 3,

then we construct 3 matrices with four columns and four rows.

 ,

In order to obtain the final hash, from the first sub-matrix , we pick the column based on

the next number of the first integer value. We select the column from the second sub-matrix based

on next number of the second integer value. From the , we select the column based on next number

of the third integer value. After picking the column value, perform an XOR operation to obtain the final

hash.

Where denotes a final output hash value. The XOR operation is performed based on input bits

and generates the output bit. If the bits are the same, the result is 0. If the bits are different, the

result is 1. In this way, hash values of cloud user data are obtained. Then the hashed data are stored into

the cloud server with minimum space complexity.

// Algorithm 1: Fast syndrome-cryptographic hash-based data storage

Input: Number of data , cloud users

Output: Minimize space complexity

Begin

1: Collect the number of data

2: For each data

3: Convert data into a sequence of bits [0,1]

4: Convert the sequence of bits into an integer

5: Construct the matrix based on the integer value

6: Pick the column value

 (2)

Webology (ISSN: 1735-188X)

Volume 18, Number 5, 2021

6 http://www.webology.org

7: Perform XOR operation

8: Obtain the final hash ‘H’

9: End for

 End

Algorithm 1 given above illustrates the step-by-step process of data storage on a cloud server

with lesser space complexity. First, the input data are converted into a sequence of bits string and obtain

the integer value. Followed by, the matrix which is constructed based on the integer value. After that,

pick the column value and perform the XOR operation. Finally, the hash value is generated and stored in

the cloud server. As a result, the space complexity of the server gets minimized.

3.3 Data auditing and Margin Infused Relaxing Support Vector Regression based

verification

Whenever the cloud user needs to audit the data, the request is sent to the third-party auditor

(TPA). The TPA performs the data auditing only for the registered user. When the TPA receives the

request from a cloud user, TPA sends the request for stored data to the Cloud Server (CS). CS sends the

requested data to the TPA for data auditing. TPA generates the hash value ‘ ’ using a fast syndrome-

based cryptographic hash function for the received data. After that, TPA verifies the generated hash

value of requested data from CS with the hash value of data stored in TPA by using Margin Infused

Relaxing Support Vector Regression in the Verification phase shown in figure 3.

Figure 3 flow processes of Data auditing and verification

The TPA verifies the generated hash value of received data from CS with the hash value of data

stored in TPA by using Margin Infused Relaxing Support Vector Regression. In this verification phase,

Margin Infused Relaxing Support Vector Regression is a machine learning technique that helps to

analyze the two hash functions based on the hyperplane. Followed by, the two marginal hyperplanes are

formed on both sides of the hyperplane. Here, the hyperplane act as a boundary between the two classes.

A separating hyperplane uses the Tanimoto index to find the similarity between two hash functions.

 (4)

Where ‘ ’ represents the Tanimoto similarity coefficient, denotes a hash value of requested

data from CS, denotes the hash value of data stored in TPA, denotes a sum of the squared

score of the , indicates a sum of the squared score of the . denotes a sum of the

product of the paired score of and . Therefore, the Tanimoto similarity coefficient provides the

Webology (ISSN: 1735-188X)

Volume 18, Number 5, 2021

7 http://www.webology.org

output ranges from 0 to +1 where +1 indicates the higher similarity, and 0 represents the low similarity.

Based on the similarity value, the verification process is performed. In the Verification phase, the output

result is ‘1’, the hash value is matched and data stored in CS is not altered by intruders. When the output

result is ‘-1’, the hash value is not matched and data stored in CS is altered by intruders. If the result

falls on the marginal hyperplane instead of falling on either side of the margin, then the Margin Infused

relax technique is applied to maximize the margin hyperplane between the two classes.

 (5)

From (5), denotes a Margin Infused Relaxing output, denotes an argument of the

maximum function, and denotes a two marginal hyperplane.

Figure 4 Tanimoto indexed Margin Infused Relaxing Support Vector Regressive Data Auditing

 Figure 4 reveals a Margin Infused Relaxing support vector regression for hash verification using

Tanimoto similarity coefficient based on either side of the hyperplane (. As shown in figure 4,

and denotes two marginal hyperplanes. In this way, the hash verification is performed by the TPA

to increase the data integrity and minimize the auditing time. The algorithmic process of the Tanimoto

index Margin Infused Relaxing Support Vector Regressive Data Auditing is described as given below,

Algorithm 2: Tanimoto index Margin Infused Relaxing

Support Vector Regressive Data Auditing

Input: Generated hash values

Output: Improve data integrity rate

Begin

1. If the User audit the data from the server

2. Send a request to TPA

3. TPA sends a request to a cloud server

4. Cloud server sends the requested data into TPA in

the form of hash (‘

5. TPA generates the hash for that data (‘

6. End if

7. TPA performs verification

8. Construct hyperplane ‘ ’

9. Find two marginal hyperplane ,

10. Measure the similarity between two hash functions

‘ ’

Webology (ISSN: 1735-188X)

Volume 18, Number 5, 2021

8 http://www.webology.org

11. if ()then

12. Data was not altered by intruders

13. else

14. Data was altered by intruders

15. end if

End

Algorithm 2 describes the data auditing with higher integrity. The user sends the request to TPA for

verifying the integrity of stored data in the cloud server. The third party effectively audit the multiple

users’ data for verifying integrity using Tanimoto index Margin Infused Relaxing Support Vector

Regression. If the hash is matched correctly, then the data is not altered by any intruders increasing the

data integrity rate. In this way, the proposed technique achieves higher data integrity on cloud storage

with minimum auditing time.

4. Experimental Scenario

 In this section, experimental evaluation of the proposed FSCHS-TIMRSVRDA technique PP-

CSA [1], Dynamic data auditing scheme [2] is implemented using Java language with CloudSim

simulator. The Amazon Elastic Compute Cloud (EC2) dataset http://www.ec2instances.info/ is used for

data auditing in the cloud server. Amazon EC2 dataset is a web service that offers storage security on a

cloud server. The user data are stored to a cloud server in the form of the hash value. Then the third-

party auditor verifies the integrity of that stored data. The performance evaluation of the FSCHS-

TIMRSVRDA technique is compared with existing methods with respect to a number of cloud user data.

5. Performance analysis

 The result performance of the FSCHS-TIMRSVRDA technique and PP-CSA [1], Dynamic

data auditing scheme [2] are described in this section with various metrics such as Space complexity,

Data integrity rate, and data auditing time. The graphical results and tabulation show that the

performance results of proposed and existing methods.

Space complexity: It is measured as the amount of memory space consumed for storing the hashed data

into the cloud server. The space complexity is measured as given below,

 (6)

 By using (6), denotes a space complexity, ’ indicates a number of cloud user data,

 denotes a memory for storing the data. Space complexity is measured in terms of megabytes

(MB).

Data integrity rate: It is defined as the number of data stored into the cloud server not altered by any

intruders to the number of data. The formula for calculating the data integrity rate is given below,

 (7)

http://www.ec2instances.info/

Webology (ISSN: 1735-188X)

Volume 18, Number 5, 2021

9 http://www.webology.org

 By using (7), ‘ ’ denotes a data integrity rate, denotes the number of data not altered,

’ indicates a number of cloud user data. Data integrity rate is measured in the unit of percentage (%).

Data auditing time: It is defined as the amount of time consumed by the algorithm to audit the cloud

user data. The overall time consumption of the algorithm is computed as given below,

 (8)

 In (8), represents the data auditing time and represents the number of cloud user data,

denotes time consumption. The auditing time is measured in terms of milliseconds (ms).

Table 1 Space complexity

Number

of cloud

user

data

Space complexity (MB)

FSCHS-

TIMRSVRDA

PP-

CSA

Dynamic

data

auditing

scheme

40 21 24 28

80 24 28 30

120 30 32 36

160 34 38 42

200 40 44 48

240 43 48 53

280 48 50 56

320 53 56 61

360 55 58 63

400 58 60 64

Table 1 given above provides the performance results of space complexity using three methods namely

the FSCHS-TIMRSVRDA technique, PP-CSA [1], Dynamic data auditing scheme [2]. In order to

compute the space complexity, a number of cloud user data is taken in the ranges from 40 to 400. It is

evident from the table that the proposed FSCHS-TIMRSVRDA technique provides a unique solution

when compared to existing methods. However, with the experiment is conducted for 40 cloud user data,

the memory consumed for storing the data was found to be using the FSCHS-TIMRSVRDA

technique. Similarly, memory consumed for storing the data was found to be nd using

PP-CSA [1], Dynamic data auditing scheme [2] respectively. Likewise, various performance results are

obtained with respect to a number of cloud user data. From this validation result, the space complexity

using space complexity is said to be comparatively minimized by 8% and 17% than [1] and [2].

Webology (ISSN: 1735-188X)

Volume 18, Number 5, 2021

10 http://www.webology.org

Figure 5 Graphical representation of space complexity

Figure 5 given above shows the graphical illustration of space complexity with respect to a distinct

number of cloud user data. As shown in figure 5, ‘ ‘axis represents the number of cloud user data, and

‘ ’ axis represents the space complexity. The graph shows that the space complexity of different

methods gets increased while increasing the number of cloud user data ranging between 40 and 400. But

comparatively, the space complexity of the FSCHS-TIMRSVRDA technique is found to be minimized

when compared to existing methods. The reason behind the minimum space complexity was owing to

the application of fast syndrome-cryptographic hash-based data storage onto the cloud server. The input

cloud user data are converted into hash values and stored on the cloud server. The hash value of the data

consumed lesser storage space than the original data. This helps to minimize the space complexity.

Table 2 Data integrity rate

Number

of cloud

user

data

Data integrity rate (%)

FSCHS-

TIMRSVRDA

PP-CSA Dynamic

data auditing

scheme

40 95 90 88

80 94 87 84

120 95 88 85

160 94 89 86

200 95 88 85

240 96 90 87

280 95 88 84

320 96 91 87

360 97 90 88

400 95 89 86

Table 2 illustrates the comparison between data integrity rates using three different methods, FSCHS-

TIMRSVRDA technique, PP-CSA [1], Dynamic data auditing scheme [2] respectively. The data

integrity rate is measured with respect to a distinct number of cloud user data ranging between 40 and

400. Compared to other existing methods, the proposed FSCHS-TIMRSVRDA technique provides

improved performance as compared to other related methods. This is inferred from the experiments

where 38 data were not altered by any intruders using the FSCHS-TIMRSVRDA technique, 38 data

Webology (ISSN: 1735-188X)

Volume 18, Number 5, 2021

11 http://www.webology.org

were not altered using [1] and 35 data were not altered using [2]. As a result, the overall data integrity

rate using the three methods was found to be 95%, 90 [1], and 88 [2] respectively. Different performance

results are observed for each method. With this, the overall data integrity rate using the FSCHS-

TIMRSVRDA technique is said to be improved by 7% compared to [1] and 11% compared to [2].

Figure 6 Graphical representation of data integrity rate

Figure 6 illustrates the data integrity rate of three auditing schemes namely the FSCHS-TIMRSVRDA

technique, PP-CSA [1], Dynamic data auditing scheme [2]. As shown in the graph, the data integrity rate

of the FSCHS-TIMRSVRDA technique is found to be increased when compared to existing methods.

The reason behind the improvement was due to the application of Tanimoto index Margin Infused

Relaxing Support Vector Regression. The Support Vector Regression uses the Tanimoto index for

verifying the hash value of cloud user data by the third-party auditor. If the two hash values get matched,

the input data was not altered by an intruder. This helps to obtain a high integrity rate.

Table 3 Data auditing time

Number of

cloud user

data

Data auditing time (ms)

FSCHS-

TIMRSVRDA

PP-CSA Dynamic data

auditing scheme

40 16 20 24

80 20 22 26

120 24 26 28

160 27 32 34

200 32 34 36

240 34 36 38

280 36 39 42

320 38 42 44

360 40 43 45

400 42 44 48

Webology (ISSN: 1735-188X)

Volume 18, Number 5, 2021

12 http://www.webology.org

Figure 7 Graphical representations of data auditing time

Finally, Table 3 and Figure 7 the graphical illustration of data auditing time with respect to a distinct

number of data. In the graph, the horizontal axis represents the number of data, and the vertical axis

represents the data auditing time. As shown in figure 7, an increasing trend is found while increasing the

cloud user data ranging between 40 and 400. Among three different auditing schemes, the FSCHS-

TIMRSVRDA technique minimizes the data auditing time. This is proved through statistical estimation.

The experimentation is conducted for 40 data, the time consumption of auditing the data using the

FSCHS-TIMRSVRDA technique was found to be therefore, the time consumption of data

auditing using PP-CSA [1], Dynamic data auditing scheme [2] are and 24 respectively. As a

result, the overall data auditing time was said to be minimized by 9% using the FSCHS-TIMRSVRDA

technique when compared to [1] and 16% when compared to [2] respectively. The reason behind the

application of Tanimoto index Margin Infused Relaxing Support Vector regression. The third party

verifies the multiple users’ data by using the Regression function. The regression function uses the

Tanimoto index for measuring the similarity between the two hash values such as the hash value of

requested data from the cloud server with the hash value of data stored in TPA. Based on the similarity

value, the Regression function provides the verification results. This process helps to minimize the data

auditing time.

6. Conclusion

 In this paper, a proposed FSCHS-TIMRSVRDA technique is developed for data storage and auditing in

the cloud environment. The proposed FSCHS-TIMRSVRDA technique achieved higher data integrity,

by hashing the data before storing it on the cloud server. The FSCHS-TIMRSVRDA technique first

performs the data storage with the help of fast syndrome-cryptographic hash-based data storage on to the

cloud server. The input cloud user data are converted into hash values and it stored on the cloud server.

The cloud server provides storage services to cloud users. Secondly, the Tanimoto index Margin Infused

Relaxing Support Vector regression is applied to perform the integrity verification. In this way, efficient

data auditing is performed with minimum time. Experimental assessment is carried out for analyzing the

performance of the FSCHS-TIMRSVRDA technique and the conventional auditing methods with

different metrics such as space complexity, data integrity rate, and data auditing time The

implementation and discussed results confirm that the proposed FSCHS-TIMRSVRDA technique is

performed well and is more efficient than the earlier ones, having a higher data integrity rate, and lesser

time as well as space complexity.

Webology (ISSN: 1735-188X)

Volume 18, Number 5, 2021

13 http://www.webology.org

References

[1] Yan Xu, Long Ding, Jie Cui, Hong Zhong, Jia Yu, “PP-CSA: A Privacy-Preserving Cloud Storage

Auditing Scheme for Data Sharing”, IEEE Systems Journal , Volume 15, Issue 3, 2021, Pages 3730 –

3739

[2] Xingyue Chen, Tao Shang, Feng Zhang, Jianwei Liu & Zhenyu Guan, “Dynamic data auditing

scheme for big data storage”, Frontiers of Computer Science, Springer, Volume 14, 2020, Pages 219-

229

[3] Jiguo Li, Hao Yan, Yichen Zhang, “Identity-Based Privacy Preserving Remote Data Integrity

Checking for Cloud Storage”, IEEE Systems Journal, Volume 15, Issue 1, 2021, Pages 577 - 585

 [4] Xuelian Li, Lisha Chen, and Juntao Gao, “An Efficient Data Auditing Protocol With a Novel

Sampling Verification Algorithm”, IEEE Access, Volume 9, 2021, Pages 95194 – 95207

[5] Li Li and Jiayong Liu, “SecACS: Enabling lightweight secure auditable cloud storage with data

dynamics”, Journal of Information Security and Applications, Volume 54 , 2020, Pages 1-10

[6] Baidaa Abdulrahman Jalil, Taha Mohammed Hasan, Ghassan Sabeeh Mahmood, Hazim Noman

Abed, “A secure and efficient public auditing system of cloud storage based on BLS signature and

automatic blocker protocol”, Journal of King Saud University - Computer and Information Sciences,

Elsevier, 2021, Pages 1-14

[7] Neenu Garg , Seema Bawa, Neeraj Kumar, “An efficient data integrity auditing protocol for cloud

computing”, Future Generation Computer Systems, Elsevier, Volume 109, August 2020, Pages 306-316

[8] Qingqing Gan, Xiaoming Wang, Jianwei Li, Jiajun Yan, Suyu Li, “Enabling online/offline remote

data auditing for secure cloud storage”, Cluster Computing, Springer, Volume 24, 2021, Pages 3027-

3041

[9] Junfeng Tiana,Haoning Wang , Meng Wang, “Data integrity auditing for secure cloud storage using

user behavior prediction”, Computers & Security, Elsevier, Volume 105, 2021, Pages 1-13

[10] Reem Almarwani, Ning Zhang, James Garside, “A novel approach to data integrity auditing in

PCS: Minimising any Trust on Third Parties (DIA-MTTP)”, PLoS ONE, Volume 16, Issue 1, 2021,

Pages 1-54

[11] Sameen Fatima, Dr. Shafiq Hussain and Rana Abu Bakar, “An Efficient Secure Auditing

Framework for Big Data Storage in Cloud Computing Environment”, International Journal of

Computing and Digital Systems, Volume 10, Issue 01, 2021, Pages 817-827

[12] M. Thangavel and P. Varalakshmi, “Enabling Ternary Hash Tree Based Integrity Verification for

Secure Cloud Data Storage”, IEEE Transactions on Knowledge and Data Engineering , Volume 32,

Issue 12, 2020, Pages 2351 – 2362

[13] Xiaodong Yang, Xizhen Pei, Meiding Wang, Ting Li, Caifen Wang, “Multi-Replica and Multi-

Cloud Data Public Audit Scheme Based on Blockchain”, IEEE Access, Volume 8, 2020, Pages 144809

– 144822

[14] Lunzhi Deng, Benjuan Yang, Xiangbin Wang, “A Lightweight Identity-Based Remote Data

Auditing Scheme for Cloud Storage”, IEEE Access, Volume 8, Pages 206396 – 206405

[15] Yang Xu, Ju Ren, Yan Zhang, Cheng Zhang, Bo Shen, Yaoxue Zhang, “Blockchain Empowered

Arbitrable Data Auditing Scheme for Network Storage as a Service”, IEEE Transactions on Services

Computing , Volume 13, Issue 2, 2020, Pages 289 – 300

[16] Yang Yang, Yanjiao Chen, Fei Chen, “A Compressive Integrity Auditing Protocol for Secure Cloud

Storage”, IEEE/ACM Transactions on Networking , Volume 29, Issue 3, 2021, Pages 1197 – 1209

Webology (ISSN: 1735-188X)

Volume 18, Number 5, 2021

14 http://www.webology.org

[17] Zhenpeng Liu, Yi Liu, Xianwei Yang,Xiaofei Li, “Integrity Auditing for Multi-Copy in Cloud

Storage Based on Red-Black Tree”, IEEE Access , Volume 9, 2021, Pages 75117 – 75131

[18] Rama Krishna Kalluri and Guru C.V, “An effective analytics of third party auditing and Trust

architectures for integrity in cloud environment”, Materials Today: Proceedings, Elsevier, 2021, Pages

1-5

[19] Wenting Shen, Jing Qin, Jia Yu, Rong Hao, Jiankun Hu, Jixin Ma, “Data Integrity Auditing without

Private Key Storage for Secure Cloud Storage”, IEEE Transactions on Cloud Computing Volume 9,

Issue 4, 2021, Pages 1408 – 1421

[20] Lu Rao, Hua Zhang, Tengfei Tu, “Dynamic Outsourced Auditing Services for Cloud Storage

Based on Batch-Leaves-Authenticated Merkle Hash Tree”, IEEE Transactions on Services Computing ,

Volume 13, Issue 3, 2020, Pages 451 - 463

